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Research

There is a substantial and growing literature on 
the potential impacts of climate change in the 
absence of efforts to mitigate the atmospheric 
accumulation of greenhouse gases due to 
global emissions and other factors. The recent 
Intergovernmental Panel on Climate Change 
(IPCC) Fourth Assessment Report found that 
“warming of the climate system is unequivo-
cal” and that “most of the observed increase in 
globally averaged temperatures since the mid-
20th century is very likely due to the observed 
increase in anthropogenic greenhouse gas 
concentrations” (IPCC 2007). Of particu-
lar importance for the U.S. Environmental 
Protection Agency’s (EPA’s) mission to pro-
tect human health and the environment is the 
potential for future climate change to cause 
air quality degradation via climate-induced 
changes in meteorology and atmospheric 
chemistry, which poses challenges to the U.S. 
air quality management system and the effec-
tiveness of its pollution mitigation strategies 
(IPCC 2007; Isaksen et al. 2009; Jacob and 
Winner 2009; National Research Council 
2004). In this context, the Global Change 
Research Program in the U.S. EPA’s Office 

of Research and Development, in partnership 
with its Office of Air and Radiation, began 
soliciting research that targeted the impacts 
of climate change on air quality in 1999 (U.S. 
EPA 2009a; Weaver et al. 2009).

To move from a consideration of environ
mental impacts to an explicit assessment of 
human health risks, the demographics, and 
the size of the exposed population, whether 
now or in the future, is a critical input to any 
analysis of the human health effects related to 
climate change. Therefore, the U.S. EPA has 
concurrently been developing high-resolution, 
spatially explicit population projections for 
the United States. These projections, from the 
Integrated Climate and Land-Use Scenarios 
(ICLUS) project (U.S. EPA 2009b), have been 
developed to be consistent with the underlying 
assumptions of the IPCC Special Report on 
Emissions Scenarios (SRES) social, economic, 
and demographic storylines (Nakicenovic 
et al. 2000; U.S. EPA 2009b).

Our work builds on these two efforts by 
examining the potential indirect impacts of 
climate change on the health of a hypotheti-
cal future U.S. population [in approximately 

(ca.) year 2050] via its direct impact on tropo-
spheric ozone (O3) concentrations. We input 
both the results of the linked climate change 
and air quality models (hereafter referred to 
as the climate change–air quality modeling 
systems) and various population projections 
into the Environmental Benefits Mapping 
and Analysis Program (BenMAP), the U.S. 
EPA’s air pollution benefits analysis model, to 
estimate the changes in adverse health effects 
resulting from the changes in ambient O3 con-
centrations simulated by the climate change–
air quality modeling systems. Our analysis 
considers the health impacts associated with 
O3 changes induced only by future climate 
change; the air quality modeling simulated the 
response of O3 to global climate change alone, 
without changes in anthropogenic emissions 
of O3 precursors [e.g., due to future air qual-
ity management efforts and future economic 
growth, as described previously (U.S. EPA 
2009a; Weaver et al. 2009)].

In several studies, investigators modeled 
the health impacts of climate change–induced 
changes in O3 (Bell et al. 2007; Hwang et al. 
2004; Knowlton et al. 2004; Sheffield et al. 
2011; Tagaris et al. 2009; West et al. 2007). 
All of these studies found that simulated cli-
mate change produced increases in O3-related 
mortality. Tagaris et al. (2009) also found the 
potential for additional PM2.5-related mortality 
due to climate change. However, few studies 
have investigated the sensitivity of their esti-
mates to the underlying modeling choices. For 
example, each of the references cited used a sin-
gle climate change–air quality modeling system 
as the basis for their analysis, although Tagaris 
et al. (2009) did provide a useful estimate of the 
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Background: Future climate change may cause air quality degradation via climate-induced changes 
in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly 
modeled the potential relationships between climate change, air quality, and human health, and 
fewer still have investigated the sensitivity of estimates to the underlying modeling choices.

Objectives: Our goal was to assess the sensitivity of estimated ozone-related human health impacts 
of climate change to key modeling choices. 

Methods: Our analysis included seven modeling systems in which a climate change model is linked 
to an air quality model, five population projections, and multiple concentration–response functions. 
Using the U.S. Environmental Protection Agency’s (EPA’s) Environmental Benefits Mapping and 
Analysis Program (BenMAP), we estimated future ozone (O3)-related health effects in the United 
States attributable to simulated climate change between the years 2000 and approximately 2050, 
given each combination of modeling choices. Health effects and concentration–response func-
tions were chosen to match those used in the U.S. EPA’s 2008 Regulatory Impact Analysis of the 
National Ambient Air Quality Standards for O3.

Results: Different combinations of methodological choices produced a range of estimates of 
national O3-related mortality from roughly 600 deaths avoided as a result of climate change to 
2,500 deaths attributable to climate change (although the large majority produced increases in mor-
tality). The choice of the climate change and the air quality model reflected the greatest source of 
uncertainty, with the other modeling choices having lesser but still substantial effects.

Conclusions: Our results highlight the need to use an ensemble approach, instead of relying on 
any one set of modeling choices, to assess the potential risks associated with O3-related human 
health effects resulting from climate change.
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uncertainty surrounding their O3-related health 
findings based on the range of results reported 
in Weaver et al. (2009). Similarly, only West 
et al. (2007) considered population growth in 
their analysis. Therefore, instead of developing 
a quantitative estimate of future human health 
impacts of climate-induced O3 changes, our 
goal, building on these previous studies, was 
to assess the sensitivity of such estimates to key 
modeling assumptions and choices. Our pur-
pose was to explore the uncertainty surrounding 
the assessment of these climate-related health 
impacts and to sketch out the set of health risks 
that society must begin to consider.

Methods
Our study was designed to assess the sensitivity 
of projected future O3-related human health 
impacts in the United States to modeling and 
methodological choices for a) climate-induced 
changes in future meteorological conditions; 
b) the changes in O3 concentrations result-
ing from those meteorological changes; c) the 
size of the affected population, as well as its 
age and geographic distributions; and d) the 
concentration–response (C–R) relationships 
linking O3 levels to specific health outcomes.

There is substantial uncertainty surround-
ing each of the inputs to our analysis, particu-
larly because it focuses so far into the future. 
Much of this uncertainty cannot be assessed 
quantitatively. Even assigning probabilities to 
the different models (representing our subjec-
tive assessments about the relative accuracy 
with which each approximates a future reality) 
is premature. Instead, we present our analysis 

as a series of sensitivity analyses or “what if” 
scenarios designed to assess the impact of the 
various assumptions and modeling approaches 
on the results. Figure 1 illustrates the basic 
structure of the analysis.

Climate change–air quality modeling 
systems. Our analysis includes seven model-
ing efforts of six research groups: Harvard 
University; Carnegie Mellon University 
(CMU); Washington State University (WSU); 
U.S. EPA’s National Exposure Research 
Laboratory (NERL); the joint efforts of the 
Georgia Institute of Technology, the Northeast 
States for Coordinated Air Use Management, 
and the Massachusetts Institute of Technology 
(GNM); and the University of Illinois, 
which considered two different SRES sce-
narios (denoted Illinois-1 and Illinois-2), but 
otherwise used identical setups. The Harvard 
and CMU simulations used global-scale (e.g., 
4° × 5° grids) atmospheric chemistry mod-
els. The remaining simulations used regional 
air quality models, which necessitates down
scaling global climate model data to fine scales 
(e.g., 36‑km grids). These modeling efforts are 
described in detail elsewhere (U.S. EPA 2009a; 
Weaver et al. 2009); we have summarized the 
key characteristics in Tables 1 and 2. Briefly, 
each modeling group explored the potential 
impacts of climate change on O3 concentra-
tions in the United States using two linked 
models. First, we used a climate model to simu
late meteorological conditions in the United 
States for future years (under climate change) 
and in the present. This modeled meteorol-
ogy was then input to an air quality model to 

simulate the ambient O3 concentrations that 
would result. Anthropogenic emissions were 
held constant between the base case and the 
climate change case, but climate-sensitive bio-
genic and evaporative emissions were allowed 
to change in response to changes in climate. 
Baseline emissions were similar, although not 
identical, across modeling efforts (e.g., for the 
United States, based largely on 1999 or 2001 
U.S. EPA emissions inventory data), as detailed 
in the references cited by the U.S. EPA (2009a) 
and Weaver et  al. (2009). Some modeling 
groups used dynamical downscaling (with a 
regional climate model) to further regionalize 
the global climate model simulation outputs. 
The choice of downscaling model and meth-
odology is an additional source of uncertainty, 
but systematically separating out this additional 
source was not feasible for this analysis.

The modeling groups produced from 
3 to 10 summers of maximum daily 8-hr aver-
age ozone concentrations (MDA8) that were 
approximately centered on the years 2000 
(present) and 2050 (future). The MDA8 was 
computed by taking rolling 8-hr averages for a 
24-hr period and then taking their maximum. 
This was performed for all days in the modeled 
O3 seasons. Although different models used 
different grids, the air quality grids for all of the 
models were remapped to a 30 km × 30 km 
grid for this analysis for consistency. Further 
adjustment of modeled air quality is described 
in Supplemental Material, p. 3 (http://dx.doi.
org/10.1289/ehp.1104271).

Population projections to a future year. 
All of the BenMAP runs used populations 
projected to 2050. To explore the sensitiv-
ity of our results to assumptions about what 
this future population would look like, we 
selected five population projections for input 
into our analysis. One of these was simply the 
2000 Census population (i.e., we assumed 
no change from the 2000 Census popula-
tion by 2050 to show the risk associated with 
climate change in the absence of changes in 
populations exposed) (U.S. EPA 2010b). A 
second population projection is extrapolated 
from the Woods & Poole population projec-
tions for the year 2030 already in BenMAP 
(Woods & Poole Economics Inc. 2007), 
using a set of exponential smoothing forecast-
ing methods [for details, see Supplemental 
Material, pp. 3–4 (http://dx.doi.org/10.1289/
ehp.1104271)]. Finally, we selected three of 
the ICLUS population projections—A1, A2, 
and the base case—to provide the lower and 
upper bound ICLUS total population pro-
jections, as well as an intermediate case. The 
basis for the ICLUS population projects and 
the underlying assumptions are described in 
detail elsewhere (U.S. EPA 2009b) and more 
briefly in the Supplemental Material, p. 4.

C–R relationships and health impact 
functions. We followed the selection of health 

Figure 1. The structure of the analysis of O3-related impacts on human health attributable to climate 
change. GHG, greenhouse gas.
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effects, studies, and C–R functions that the 
U.S. EPA used in the benefits analysis for the 
Regulatory Impact Analysis of the National 
Ambient Air Quality Standards for O3, which 
was completed in 2008 (U.S. EPA 2008; 
2010a). The C–R functions are taken from epi-
demiological studies, and we assumed they were 
applicable to any year, although this assumption 
entails additional uncertainties. The suite of 
health effects included mortality from all causes 
(all-cause mortality), nonaccidental mortality, 
hospital admissions for respiratory illnesses, 
emergency room (ER) visits for asthma, school 
loss days; and minor restricted activity days 
[see Supplemental Material, Table S1 (http://
dx.doi.org/10.1289/ehp.1104271) for study 
details]. For several health effects, two or more 
C–R functions were pooled (see Supplemental 
Material, pp. 4–5 for details on pooling and 
Table S4 for the pooled estimates). 

Most of the studies in the air pollution 
epidemiological literature have estimated 
exponential (log-linear) C–R functions in 
which the natural logarithm of the health 
effect is a linear function of the air pollutant:

	 y = Beβx,	 [1]

where x is the ambient air pollutant (e.g., O3) 
level, y is the incidence of the health effect at 
O3 level x, β is the coefficient of ambient O3 
concentration, and B is the incidence at x = 0.

The health impact function—the relation-
ship between a change in the pollutant con-
centration (Δx = x1–x0) and the corresponding 
change in incidence of the health effect in the 
population (Δy = y1–y0)—derived from the 
log-linear C–R function is

	 Δy = y0[eβΔx–1],	 [2]

where x1 and x0 represent the model-simulated 
summertime O3 levels ca. 2050 and ca. 2000, 
respectively, while y1 and y0 represent the 
health effect incidence in the with and with-
out climate-change (baseline) scenario, respec-
tively. The baseline incidence (y0) is the product 
of the baseline incidence rate and the exposed 
population. The measure of O3 concentration 
available from the climate change–air quality 
models is the O3 season average of the MDA8. 
The C–R functions relate the MDA8 to health 
effects, and we applied this O3 season average 
MDA8 to each day. Because the health impact 
functions are nearly linear, this application of 
a seasonal average to each day in the season 
provides a good approximation to the result 
we would get if we had individual daily 8-hr 
maxima for each day in the O3 season. In many 
cases, the C–R function used an O3 metric 
other than the MDA8 (e.g., the 24-hr mean) 
[see Supplemental Material, Table S1 (http://
dx.doi.org/10.1289/ehp.1104271)]; the coef-
ficients from these functions were converted to 

coefficients for the MDA8 (for the methods, 
see Abt Associates Inc. 2010, Appendix G). 
This conversion would be expected to add only 
a small amount of uncertainty to the results.

Baseline incidence rates. A detailed descrip-
tion of the estimation of baseline incidence 
rates ca. 2050 is given in the Supplemental 
Material, pp. 5–7 (http://dx.doi.org/10.1289/
ehp.1104271). Briefly, we calculated cause-
specific death counts at the county level for 
selected age groups from individual-level 
mortality data for years 2004 through 2006, 
obtained from the Centers for Disease Control 
and Prevention (CDC 2008b), National 
Center for Health Statistics (NCHS), for the 
entire United States. The county-level death 
counts were then divided by the corresponding 
county-level population to obtain the mortality 
rates. We used 3 years (2004–2006) of mortal-
ity and population data to provide more stable 
estimates. We then extrapolated these county-
level mortality rates to 2050 using the U.S. 
Census Bureau national mortality life tables 
(U.S. Census Bureau 2010).

Regional rates for hospitalizations and 
asthma ER visits were calculated from year 
1999 regional hospitalizations and year 2000 
ER visits obtained from the National Hospital 
Discharge Survey and the National Hospital 
Ambulatory Medical Care Survey, respec-
tively (CDC 2008a, 2010) [see Supplemental 
Material, pp. 6–7 (http://dx.doi.org/10.1289/
ehp.1104271)]. We applied the regional rates to 

every county in a region. Hospitalization rates 
are cause specific, with causes defined by those 
combinations of the International Classification 
of Diseases, Ninth Revision (ICD-9) codes (see 
Supplemental Material, Table S1) that were 
used in the selected epidemiological studies 
(e.g., Bell et al. 2004; Ito et al. 2005). However, 
we were unable to project rates of hospitaliza-
tions and ER visits to 2050 because, unlike 
mortality rates, there are no reliable projections 
of rates for hospitalizations or for ER visits or 
for trends into the future.

Defining the O3 season. The climate 
change–air quality models used in this analy-
sis generally defined the O3 season as June, 
July, and August (i.e., climatological summer 
in the Northern Hemisphere). Although most 
of the air pollution epidemiology studies that 
have focused on O3 have defined the season 
more broadly (e.g., May through September), 
we used the more conservative June through 
August definition for consistency with the O3 
simulations. Modeling results summarized in 
Weaver et al. (2009) indicate similar magni-
tudes of climate-induced O3 increases in fall 
and spring, suggesting that the health impacts 
we report here are more conservative than if we 
considered a more standard, longer O3 season.

Estimation of human health impacts. 
BenMAP calculated the change in each adverse 
health effect within each grid cell of the air 
quality grid by combining the appropriate C–R 
function coefficient (β), baseline incidence 

Table 1. Summary of global climate and O3 modeling systems used in this analysis.

Modeling system Harvard CMU
Simulation period 5 summers/falls 10 summers/falls
GCM GISS III GISS II’
Resolution 4° × 5° 4° × 5°
GHG scenario A1b A2
GCTM GEOS-chem GISS II’
Climate sensitive emissions BVOCs; lightning and soil NOx BVOCs; lightning and soil NOx 

Abbreviations: A1b, A2, the names given to the SRES scenarios of greenhouse-gas (GHG) emissions used to drive the cli-
mate models; BVOC, biogenic volatile organic compounds; GCM, general circulation model; GCTM, global chemical trans-
port model; GEOS, Goddard Earth Observing System; GISS, Goddard Institute for Space Studies; NOx, nitrogen oxides.

Table 2. Summary of regional climate and O3 modeling systems.

Modeling system NERL Illinois-1 Illinois-2 WSU GNM
Simulation period 5 JJAs 4 JJAs 4 JJAs 5 Julys 3 JJAs
GCM GISS III PCM PCM PCM GISS III
Global resolution 4° × 5° 2.8° × 2.8° 2.8° × 2.8° 2.8° × 2.8° 4° × 5°
GHG scenario A1b A1Fi B1 A2 A1b
RCM MM5 CMM5 CMM5 MM5 MM5
Regional resolution 36 km 90/30 km 90/30 km 36 km 36 km 
Convection scheme Grell Grell Grell Kain–Fritsch Grell
RAQM CMAQ AQM AQM CMAQ CMAQ
Chemical mechanism SAPRC99 RADM2 RADM2 SAPRC99 SAPRC99
Climate sensitive 

emissions
BVOCs; 

evaporative
BVOCs; 

evaporative
BVOCs; 

evaporative
BVOCs; 

evaporative
BVOCs; 

evaporative

Abbreviations: A2, A1b, A1Fi, B1, and B2, the names given to the SRES scenarios of greenhouse-gas (GHG) emissions 
used to drive the climate models; AQM, air quality model; BVOC, biogenic volatile organic compounds; CMAQ, Community 
Multiscale Air Quality Model; CMM5, University of Illinois climate extension of the Penn State/National Center for 
Atmospheric Research (NCAR) Mesoscale Model, version 5; GCM, general circulation model; GISS, Goddard Institute for 
Space Studies; JJA, June, July, August; Grell and Kain-Fritsch, convective parameterizations in the regional climate mod-
els; MM5, Penn State/NCAR Mesoscale Model, version 5; PCM, parallel climate model; RADM2, Regional Atmospheric 
Deposition Model (2nd generation); RAQM, regional air quality model; RCM, regional climate model; SAPRC, statewide air 
pollution research center; SAPRC99, one of the chemical mechanism packages used in the CMAQ model.
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(y0), and simulated change in O3 due to cli-
mate change (Δx) in the health impact func-
tion (Equation 2). Although BenMAP uses 
the same “national” C–R function coefficient 
(β) in all grid cells, population estimates and 
baseline incidence rates in the health impact 
function are as location-specific as possible. 
The grid cell-specific changes in health effects 
are then summed across grid cells to produce 
county-level, state-level, and national estimates 
of health impacts.

Results
Using the 7 climate change–air quality 
modeling systems and the 5 population pro-
jections, we produced 35 potential answers 
to the question: How many O3-related cases 
of a given health effect (e.g., nonaccidental 
mortality) may be attributable to climate 

change in the conterminous United States in a 
future year? We also considered more than one 
C–R function for some health effects, further 
increasing the number of potential answers.

National results. Estimates of the annual 
national O3-related nonaccidental mortality 
ca. 2050 ranged from > 600 deaths avoided 
because of climate change to > 2,500 deaths 
attributable to climate change, depending on 
the climate change–air quality modeling sys-
tem, population projection, and C–R function 
used (Table 3). Estimates for all-cause mor-
tality follow similar patterns according to the 
climate change–air quality modeling system 
and population projection [see Supplemental 
Material, Table S2 (http://dx.doi.org/10.1289/
ehp.1104271)]. The broad patterns seen for 
mortality across the different modeling choices 
are largely mirrored for the morbidity effect 

estimates as well, though for some health out-
comes the numbers of cases are much larger, 
for example, in the hundreds of thousands or 
millions for minor restricted activity days (see 
Supplemental Material, Tables S3–S7). 

Figure 2 summarizes the influence of the 
climate change–air quality modeling system 
and population projection on estimates of 
future O3-related nonaccidental deaths attrib-
utable to climate change, using the C–R func-
tion described by Bell et al. (2004). The C–R 
function is itself a source of substantial uncer-
tainty. For example, had we used the C–R 
function described by Ito et al. (2005) instead, 
the numbers would have generally been more 
than 4 times larger (e.g., 2,560 attributable 
deaths compared with 570 based on Illinois-1 
and ICLUS-A1), although the basic pat-
tern according to climate change–air quality 
modeling system and population projection is 
the same (Table 3).

Our analysis is one of the first to account 
for population growth and associated changes 
in age and geographic distributions. We found 
that considering these factors has a substantial 
influence on the estimates of health impacts. 
The assumption that the population ca. 2050 
will be exactly what it was in the year 2000 
(i.e., by using Census 2000 population esti-
mates) produces estimates that are consistently 
lower than those based on population projec-
tions, all of which assume at least some increase 
in population size relative to the year 2000, in 
addition to changes in the age distribution of 
future populations, as shown in Figure 2 and 
Table 3 (and proposed by Tagaris et al. 2009). 

The choice of methods to project future age 
and geographic distributions can also influence 
results. For example, although the ICLUS-A2 
population projection for 2050 is, in total, 
greater than the ICLUS-A1 projection (424.8 
million vs. 386.7 million), ICLUS-A1 is skewed 
more toward the older age groups [with about 
26% projected to be ≥ 65 years of age in 2050 
versus only about 21% based on ICLUS-A2; 
see Supplemental Material, Figure S1 (http://
dx.doi.org/10.1289/ehp.1104271)]. Because 
older people have substantially higher base-
line incidence rates for mortality (and other 
adverse health effects) than do younger people, 
the same increase in O3 concentration would 
result in more deaths among an older popula-
tion than among a younger one because the 
estimated change in the outcome is a function 
of the baseline incidence, which is the product 
of the baseline incidence rate and the popula-
tion size. This is reflected in the slightly higher 
numbers of O3-related deaths for ICLUS-A1, 
despite the overall smaller population. If C–R 
functions were available for age group-spe-
cific mortality, their application would likely 
accentuate the importance of age distribution, 
because older people may be more vulnerable 
to air pollution.

Table 3. Estimated changes in national summertime (June–August) O3-related nonaccidental mortality 
due to simulated climate change between 2000 and ca. 2050.a

Modeling system Study 

Population projection

ICLUS-A1 ICLUS-A2 ICLUS-BC W&P Census 2000
Illinois-1 Bell et al. 2004 570 520 510 440 170

Ito et al. 2005 2,560 2,340 2,280 1,970 780
Schwartz 2005 860 790 770 670 270

Illinois-2 Bell et al. 2004 530 480 480 420 160
Ito et al. 2005 2,390 2,180 2,160 1,870 710
Schwartz 2005 810 730 730 640 250

CMU Bell et al. 2004 480 430 430 350 150
Ito et al. 2005 2,180 1,950 1,920 1,570 690
Schwartz 2005 730 660 650 540 240

Harvard Bell et al. 2004 240 220 230 200 80
Ito et al. 2005 1,090 1,000 1,030 890 380
Schwartz 2005 370 340 350 300 130

GNM Bell et al. 2004 40 30 20 10 –20
Ito et al. 2005 180 140 80 50 –80
Schwartz 2005 60 50 30 20 –30

NERL Bell et al. 2004 10 10 –10 –50 –20
Ito et al. 2005 50 20 –40 –240 –100
Schwartz 2005 20 10 –20 –80 –40

WSU Bell et al. 2004 –150 –140 –110 –60 0
Ito et al. 2005 –650 –630 –480 –240 0
Schwartz 2005 –220 –210 –160 –90 0

W&P, Woods & Poole. 
aNumbers rounded to the nearest 10. 

Figure 2. Estimated national summertime (June–August) O3-related nonaccidental mortality due to simu-
lated climate change between 2000 and ca. 2050 (C–R function from Bell et al. 2004). We estimated that –0.6 
deaths were based on the WSU climate change model–air quality model and Census 2000 population data.
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The importance of the age distribution of 
the affected population is particularly apparent 
when we consider morbidity effects that focus 
on specific age subgroups in the population, 
such as O3-related school days lost (5–17 years 
of age) or respiratory hospital admissions among 
those ≥ 65 years of age [see Supplemental 
Material, Tables S3, S4, S6, S7 (http://dx.doi.
org/10.1289/ehp.1104271)]. For example, 
estimates of O3-related respiratory hospital 
admissions among infants attributable to cli-
mate change for a year ca. 2050 based on the 
ICLUS-A1 population projection are uniformly 
smaller in magnitude than are the correspond-
ing estimates based on ICLUS-A2 regardless of 
the climate change–air quality modeling system 
used (see Supplemental Material, Table S3). 
This is because ICLUS-A2 projects that a 
greater percentage of the population (and a 
larger total population) will be < 1 year of age, 
and that a smaller percentage of the population 
will be ≥ 65 years of age, relative to ICLUS-A1 
(see Supplemental Material, Figure S1).

Across all of these dimensions, the 
source of the greatest uncertainty, for both 
nonaccidental and all-cause mortality, appears 
to be the projections of future climate change-
induced meteorological changes and cor-
responding air quality changes, which are 
determined by the climate change–air quality 
modeling system used. This is shown clearly 
in the results of an analysis of variance, which 
decomposes the total variability in estimated 
mortality into the variability due to the cho-
sen climate change–air quality modeling sys-
tem, population projection, epidemiological 
study (C–R function) used, and interactions 
between these modeling choices, respectively 
(see Table 4). The different impacts across mod-
eling choices are magnified to a greater or lesser 
degree by study choice (i.e., by C–R function) 
[see Supplemental Material, Figure S2 (http://
dx.doi.org/10.1289/ehp.1104271)]. 

Regional estimates. Because national esti-
mates can mask very different regional changes, 
we delineated three broad regions for addi-
tional analysis: the Northeast (defined as east of 
100° west longitude and north of 36.5° north 
latitude); the Southeast (defined as east of 100° 
west longitude and south of 36.5° north); and 
the West (defined as everything west of 100° 
west longitude). These three regions account 
for the entire continental United States. Finer-
scale regional breakdowns, while possible, 
would have been an overinterpretation of our 
results given the various uncertainties.

Figure 3 shows national and regional esti-
mates of O3-related nonaccidental mortal-
ity using the C–R function from Bell et al. 
(2004) and the ICLUS-A1 population pro-
jection, and it illustrates this national-level 
masking of differing regional trends. For 
example, the modest net change in nation-
wide O3-related nonaccidental mortality 

based on the WSU climate change–air quality 
modeling system represents the sum of highly 
variable regional estimates (i.e., 275 avoided 
deaths in the Northeast, plus 369 additional 
deaths in the Southeast, plus 54 additional 
deaths in the West). With the exception of 
Illinois-1 and Illinois-2, none of the driv-
ing climate–air quality scenarios produces 

regional health impact estimates that are all 
in the same direction [i.e., increases in the 
estimated O3 concentrations attributable to 
climate change in some regions are accom-
panied by decreases in other regions, due, 
for example, to factors such as differences in 
circulation patterns and increases in cloud 
cover (see Weaver et al. 2009)]. Although the 

Table 4. Analysis of variance results for estimates of national summertime (June–August) O3-related non-
accidental mortality due to simulated climate change between 2000 and ca. 2050.

Source df ANOVA SS
Percent of 
total SS

Modeling system 6 24,271,499 48
Population projection 4 2,108,558 4
Study 2 9,055,636 18
Modeling system × study 12 10,495,284 21
Modeling system × population projection 24 2,641,882 5
Study × population projection 8 921,745 2
Modeling system × study × population projection 48 1,165,135 2
Total 104 50,659,739 100

Abbreviations: df, degrees of freedom; SS, sum of squares.

Figure 4. Cumulative probability density functions of national population-weighted summertime O3 concen-
tration changes between 2000 and ca. 2050 from the seven sets of climate change–air quality modeling 
results (ICLUS-A2 population projection; other population projections yielded similar results).
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WSU climate change–air quality simulation 
estimates suggest large decreases in O3-related 
deaths in the Southeast and large increases in 
the Northeast, the GNM and NERL model 
estimates show regional effects in just the 
opposite directions. These same general pat-
terns are evident for all-cause mortality and 
for different C–R functions for either type 
of mortality. 

Discussion 
We have attempted to assess the sensitivity of 
estimated O3-related human health effects of 
climate change to the following key modeling 
assumptions and choices: a) climate-induced 
changes in meteorological conditions and the 
corresponding changes in O3 concentrations; 
b) projections regarding the size, and age and 
geographic distributions of the affected popu-
lation; and c) the C–R relationships linking 
O3 levels to specific health outcomes.

Looking across all combinations of model-
ing choices (including the climate change–air 
quality modeling system, population pro-
jection, and C–R relationship), estimates of 
national O3-related mortality and morbidity 
attributable to climate change by mid-century 
span a wide range (e.g., from roughly 600 
cases of nonaccidental mortality avoided as a 
result of climate change to roughly 2,500 cases 
attributable to climate change).

The source of the greatest uncertainty at 
the national level appears to be the climate 
change–air quality scenario used, with choice 
of C–R function and population projection 
also important, though less influential in this 
analysis. Not only is the total population 
exposed to O3 in a future year important, but 
assumptions regarding the age distribution of 
that population are also important for esti-
mating O3-related adverse health effects. The 
variability of these estimates represents the true 
extent of uncertainty in the problem, how-
ever, only to the extent that our choices (seven 
simulations, five population projections, a few 
alternative C–R specifications, and a single 
unchanging set of emissions to air) span the full 
range of possibilities in their respective dimen-
sions. Thus, our estimates may understate the 
plausible range of potential future outcomes.

National results can mask important 
regional differences. Estimates for the Northeast 
region generally indicated adverse health 
impacts and were the most consistent across 
the seven climate–air quality scenarios of the 
three regions. In contrast, estimated health 
impacts for the Southeast showed substantial 
variation. The West generally showed the small-
est impacts, largely due to the relatively smaller 
projected populations.

The wide range of estimated O3-related 
mortality and morbidity attributable to cli-
mate change resulting from different methodo
logical choices highlights the need to consider 

an ensemble of estimates, rather than relying 
on any one modeling system or set of assump-
tions. Despite this range, however, the large 
preponderance of the estimates is in the direc-
tion of climate-induced increases in O3 leading 
to adverse health impacts. This is illustrated 
in Figure 4, which shows that population-
weighted climate-induced O3 concentration 
changes estimated using the different climate–
air quality simulations indicate that 50–90% 
of the future U.S. population would be subject 
to increases in O3 exposure, all other factors 
remaining constant.

Finally, as Tagaris et al. (2009) suggested, 
climate change may have even greater health 
impacts associated with other air pollutants 
like PM2.5. The combined health effects of O3 
and these other pollutants, along with other 
factors such as increased heat waves, should 
be explored using multipollutant models.

Conclusion
At this stage in the development of a scientific 
understanding of climate change and air 
pollution-related human health, it would be 
unwise to rely on any one model, epidemio-
logical study, or population projection. This 
is perhaps the most important message of our 
analysis. Different combinations of method-
ological choices and modeling assumptions 
produce widely varying results, particularly at 
regional scales, and can produce fundamen-
tally different conclusions about the overall 
impact of climate change on O3-related health 
effects. The goal of this study was therefore 
not to develop any best guess as to the most 
likely future human health impacts of climate-
induced O3 change, but instead to explore the 
uncertainty space surrounding assessment of 
these impacts and to begin to define the enve-
lope of future risk. This also highlights the 
need to develop decision-making frameworks 
and tools capable of managing the uncertainty 
such ensembles represent (e.g., see Johnson 
and Weaver 2009; Lempert et al. 2004).
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